

Abstracts

Optical Feedback on Linearity Performance of 1.3 μ m DFB and Multimode Lasers Under Deep Microwave Modulation

W.I. Way and M.M. Choy. "Optical Feedback on Linearity Performance of 1.3 μ m DFB and Multimode Lasers Under Deep Microwave Modulation." 1987 MTT-S International Microwave Symposium Digest 87.2 (1987 Vol. II [MWSYM]): 889-892.

High-speed InGaAsP laser diodes (LDs) are expected to be extensively used in microwave analog fiber optic systems because of the low dispersion and attenuation in the 1.3 μ m wavelength region. In this paper, we examine the effect of optical feedback on the linearity performance of both a 1.3 μ m single-longitudinal-mode (SLM) distributed feedback double-channel planar buried heterostructure (DFB-DC-PBH) LD and a 1.3 μ m multi-longitudinal-mode (MLM) buried heterostructure "window" LD. Both lasers are intrinsically highly linear in the absence of optical feedback. The effect of optical feedback is examined by a quantitatively controlled reflection at the end of a 1~2 meter pigtail. Particular attention is paid to cases where both lasers are intensity modulated by large signals (current modulation index 50% to 80%) with frequencies above 1 GHz. Modulation signal power level, frequency, and laser bias level that affect the light coherent property, and hence laser linearity characteristics under optical feedback, are discussed.

[Return to main document.](#)

Click on title for a complete paper.